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Abstract The iodine-cell technique, which is known to be efficient in pre-

cisely establishing Doppler velocity shifts, was once applied by the author to

measuring the solar differential rotation based on full-disk spectroscopic ob-

servations (Takeda and Ueno, Sol. Phys. 270, 447, 2011). However, the data

reduction procedure (in simple analogy with the stellar case) adopted therein

was not necessarily adequate, because specific characteristic involved with the

disk-resolved Sun (i.e., center–limb variation of line strengths) was not properly

taken into consideration. Therefore, this problem is revisited based on the same

data but with an application to theoretical spectrum fitting, which can yield

absolute heliocentric radial velocities (vobs) in a consistent manner as shown

in the study of solar gravitational redshift (Takeda and Ueno, Sol. Phys. 281,

551, 2012). Likewise, instead of converting vobs into ω (angular velocity) at

each disk point, which suffers considerable errors especially near the central

meridian, ω was derived this time by applying the least squares analysis to

a dataset comprising vobs values at many points. This new analysis resulted

in ω (deg day−1) = 13.92(±0.03) −1.69(±0.34) sin2 ψ −2.37(±0.62) sin4 ψ (ψ:

the heliographic latitude) along with the gravitational redshift of 675 m s−1,

which are favorably compared with previous publications. In addition, how the

distribution of observing points on the disk affects the result is also examined,

which reveals that rotation parameters may suffer appreciable errors depending

on cases.
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Y. Takeda

1. Introduction

1.1. Past Studies of Solar Differential Rotation

Ever since Christoph Scheiner noticed about 400 years ago from sunspots ob-
servations that the Sun rotates with a shorter period in the equator than in
higher latitudes, a number of observational studies on this “solar differential
rotation” were conducted especially in the 20th century (mainly by invoking
two approaches of sunspot tracing and spectroscopic Doppler method), and
various information on its characteristics has been accumulated. Moreover, the
advent of solar seismology has enabled to diagnose the nature of internal rotation
successfully. See, e.g., Paternò (2010) for a review concisely summarizing the
historical aspect and current status on this subject.

Nowadays, observationally studying the surface differential rotation on the
visible solar disk is rather classical and not the mainstream of solar physics,
given that the main features had been established in 1970s – 1980s as reviewed
by Schröter (1985). In the author’s opinion, however, it is still important and
worth pursuing to improve the precision of the rotational parameters as much as
possible, in order to clarify their dependence upon the solar activity cycle since
both should be closely connected through the dynamo mechanism.

From the viewpoint of accomplishing higher accuracy, the spectroscopic ap-
proach (quickly yielding the result and potentially applicable to any higher
latitude) may be superior to the tracing method (which requires a rather long
monitoring and is limited up to a certain latitude depending on the activity
phase).

Since radial velocities1 at many points on the solar disk have to be efficiently
determined in this case (for which classical manual work on the spectra is hardly
practicable), the best choice would be the Doppler compensator method by using
a magnetograph (e.g., Howard and Harvey, 1970). Actually, most of the spec-
troscopic measurements of solar differential rotation over the past half century
(mainly in 1960s – 1980s) have employed this technique (see, e.g., Schröter, 1985,
and the references therein).

But unfortunately, this method is not necessarily easy to practice from the
technical as well as budgetary point of view, because it requires an instrument
manufactured with skill and carefully tuned. Accordingly, application of this
technique to solar differential rotation measurement was experienced mainly in
large observatories (e.g., Mt. Wilson or Kitt Peak).

1.2. Iodine Cell as an Effective Spectroscopic Tool

Here, the iodine-cell spectroscopy may serve as a promising alternative, because
it also enables fairly precise measurement of Doppler shifts based on efficient

1Following the usual astronomical convention, we use the term “radial velocity” for the velocity
component along the line of sight (positive for the direction towards recession) in this article.
Note, however, that this terminology is not so widely used in solar physics (for which “line-
of-sight velocity” may be more preferred), presumably because the adjective “radial” is rather
confusing in distinguishing from the meaning of center-to-limb direction on the solar disk.

SOLA: body.tex; 27 June 2024; 0:36; p. 2



Solar Differential Rotation and Iodine-Cell Spectroscopy

data reduction procedures using an optimization algorithm. This method became
very popular in application to searching for extrasolar planets around stars,
although it was originally introduced in solar physics. The decisive merit of this
technique is its simplicity and cost effectiveness: what should be done is only to
place the gas filter containing iodine vapor somewhere in the light path of the
spectrograph.

A trial of applying the iodine-cell technique to measurement of solar differ-
ential rotation was done by Takeda and Ueno (2011; hereinafter referred to as
Paper I) based on full-disk spectroscopic observations, which yielded results more
or less reasonable. However, some unsatisfactory drawbacks are noticed in the
data reduction procedures adopted in that work as described below.

1.2.1. Disregarded Center–Limb Spectral Variation

Firstly, an alarming weakpoint was the choice of the reference spectrum. The
essence of data analysis in the iodine-cell method is to simulate the “object+iodine”
spectrum (to be compared with the observed one) based on the (i) “pure iodine”
spectrum and (ii) “pure object” (reference) spectrum appropriately Doppler-
shifted. In Paper I, the solar disk-center spectrum was adopted as the represen-
tative reference spectrum throughout the analysis (see Section 3 therein). This
assumption means that the center–limb spectral variation, differing from line to
line as extensively studied by Takeda and UeNo (2019), was neglected, which
must have lead to some imperfect match between the simulated and observed
spectra (especially near to the limb). This is presumably the reason for the fact
that the resulting radial velocities fluctuated and their errors were appreciably
position-dependent.

A remedy for this problem (in order to appropriately handle disk-resolved
solar spectra by correctly taking into account the center–limb variation) is to
use “theoretical reference spectra” which are so modeled as to well reproduce
observed solar spectra by adequately adjusting the parameters (abundances,
line broadening, etc.). This approach was soon later adopted by Takeda and
Ueno (2012; hereinafter Paper II) in the trial of detecting the solar gravitational
redshift, since “absolute” radial velocities are obtained in this case. Although
the precision itself attained in such an absolute analysis is quantitatively lower
as compared to the case of purely relative analysis (as done in Paper I), it has
a merit that errors in the velocity solutions are guaranteed to be consistently
uniform, which should be more essential in the present context. Accordingly,
it is worth reinvestigating the nature of solar differential rotation based on the
model-based analysis as done in Paper II. Since heliocentric radial velocities in
the absolute scale are usable in this case, there is no need to make use of the
symmetry about the central meridian (which has been adopted in almost all solar
rotation studies) and the gravitational redshift can be simultaneously derived as
a by-product based on the full-disk data.

1.2.2. Inadequate Derivation of Angular Velocity

Secondly, regarding the evaluation of the rotational angular velocity (ω) as a
function of heliographic latitude (ψ) based on the observed radial velocities (vobs)
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at each of the many points (x, y) on the disk, the procedure adopted in Paper I
was not necessarily adequate. That is, ωi(ψi) was “directly” derived from vobs,i
at each individual point (xi, yi), because ω is analytically related to vobs. The
final ω versus ψ relation (parameterized as a second-order polynomial in terms
of sin2 ψ) was determined from the least squares analysis based on the resulting
set of ωi(ψi) (i = 1, 2, . . . , N).

The problematic point is, since ω(∝ vobs/x) is almost inversely proportional
to x (distance from the meridian along the east–west direction), even small errors
involved in vobs are considerably enhanced when converted to ω if |x| is small.
As a matter of fact, those ωi data at |xi| < 0.3R (R is the solar radius) had to
be discarded in Paper I, which was a big waste because more than half of the
total points could not be used. Besides, ωi data of diversified error sizes had to
be combined, which was not sound.

A much better way of analysis should be to determine ω(ψ) from the “en-
semble” of vobs data themselves (instead of directly converting vobs to ω at each
point) by applying the least square analysis, such as previously done by Howard
and Harvey (1970). Therefore, we analyze the radial velocity data by following
this approach, where two different cases are examined: (a) ω(ψ) is expressed by
a quadratic polynomial in terms of sin2 ψ and their parameters are determined
based on all vobs data, and (b) ω is determined from the vobs data belonging to
each ψ bin of 10◦ wide (without postulating any analytic expression of ω versus
ψ relation). It would be interesting to check where both results satisfactorily
agree with each other.

1.3. Objectives of This Study

Accordingly, being motivated to overcome the problems involved in Paper I, the
purpose of this investigation is (i) to reanalyze the same observational data to
yield absolute vobs by the model-based procedure employed in Paper II, and (ii)
to derive ω as a function of ψ by applying the least squares analysis to the data
set of vobs.

Also, as a by-product of the present analysis of full-disk radial velocities, the
solar gravitational redshift should be obtained. It is interesting to compare this
value with that obtained in Paper II, which was obtained only from the meridian
data free from rotation.

In addition, as a related application, we study how the distribution of observed
points on the disk (adopted for the analysis) affects the results by examining
various test cases, which would be meaningful for understanding the critical
factor(s) influencing the precision of rotational parameters. This is another aim
of this article.

2. Observational Data

The observational data used in this study are the same as adopted in Paper I and
Paper II. These high-dispersion spectra covering 5188 – 5212 Å (imprinted with
lines of I2 molecules) were obtained by two sets of full-disk covering observations
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Figure 1. Distribution of observed points on the solar disk, at which radial velocities are
determined. The loci of constant ψ (heliographic latitude) are also depicted by red lines.

(on 20 – 21 July 2010, when the rotational axis is tilted by B0 = +4.8◦) done with
east–west aligned slits (A-set) and north–south aligned slit (B-set) by using the
Domeless Solar Telescope at Hida Observatory of Kyoto University. Each long-
slit spectrum was spatially divided into three sub-spectra designated by [l, c, r]
(for the A-set) or [t, m, b] (for the B-set). Therefore, two characters (such as
“Al” or “Bm”) are assigned to each (sub-)spectrum to discern the corresponding
spacial position (relative to the slit center) on the disk. Since the scanning over
the disk was done with ∆r = R/12 (step of radial direction) and ∆θ = 360◦/48
(step of position angle) for both sets, spectra at 3456 (= 2×12×48×3) points2

covering r(=
√
x2 + y2) = 0 (disk center) to r = 0.961R (near to the limb, R

is the solar radius) are eventually available for the analysis.3 The corresponding
locations of all these spectra on the disk are illustrated in Figure 1. See also
Section 2 of Paper I for more detailed descriptions regarding these data.

3. Radial Velocity Determination

The procedures of deriving the absolute heliocentric radial velocities (vobs) from
the observed spectra at each point of the solar disk are essentially the same as
adopted in Paper II (see Sections 3 – 5 therein). The only difference is that the
center–limb variation of the solar photospheric microturbulence (ξ) is taken into
account (instead of the constant value of ξ = 1 km s−1 assumed in Paper II) in
fitting the observed spectra with theoretically modeled ones. That is, according

2This is the gross number of the observed points in total. There are cases that they happen to
positionally overlap with each other.
3The spectra observed at the extreme limb (designated by suffix ‘12’ such as r12 in Paper I)
are not used in this investigation (as in Paper II) because of their lower reliability.
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to the recent work of Takeda (2022),

ξ = 1 + 0.0649(1− µ) + 1.427(1− µ)2 (km s−1) (1)

is adopted (see Equation 1 therein). Here, µ is the direction cosine (µ = cosΘ:
Θ is the angle between the line of sight and the surface normal), expressed in
terms of (x, y) coordinates as

µ =
√
1− (x2 + y2)/R2. (2)

The raw radial velocity (V raw
r ) at each point (along with the correspond-

ing mean error ϵ) is determined as the mean of the Doppler shifts (after be-
ing corrected for offset errors) calculated for four segments of 6 Å wide (cf.
Equations 9 – 11 in Paper II).

Then, the heliocentric radial velocity (V hel
r ) is derived by applying the helio-

centric correction (∆hel; see Section 4.1 in Paper I) as V raw
r +∆hel.

Finally, we subtract the correction for the convective blue shift (⟨δV ⟩, cf.
Equation 17 in Paper II) from V hel

r , which is expressed by the following relation

⟨δV ⟩ = −278.5 + 79.9(1− µ) + 422.3(1− µ)2 (m s−1), (3)

in order to obtain the final absolute radial velocity (vobs). Consequently, vobs is
derived as

vobs = V raw
r +∆hel − ⟨δV ⟩. (4)

The resulting values of V raw
r , ∆hel, ⟨δV ⟩, and vobs at each of the 3456 ob-

served points on the disk are presented in the supplementary online material
(tableE.dat).

The histograms for the distribution of errors (ϵ, given by Equation 11 in
Paper II) involved with vobs at each radius bin are depicted in Figure 2a,
which shows that no significant dependence exists upon the position on the
disk. Actually, their mean value (⟨ϵ⟩) obtained by averaging ϵ is almost constant
at ≈ 80 – 90 m s−1 irrespective of r (Figure 2b), in contrast to the case of
Paper I (see Figure 9b therein) where a systematic increase of ⟨ϵ⟩ with r toward
the limb was observed. Note also that the r-independent nature of ⟨ϵ⟩ shown in
Figure 2b is favorably more distinct than that in Figure 7b in Paper II (essentially
the similar figure), which is presumably due to the reasonable consideration of
center–limb variation for ξ in the present analysis.

Admittedly, the size of ϵ itself in the present case of absolute analysis is several
times larger in comparison to the relative analysis adopted in Paper I, because
various factors4 are involved as mentioned in Section 6 of Paper II. However,
as long as the present purpose (investigating the global feature of rotational
velocity field) is concerned, warranting homogeneous precision of vobs over the
disk should be more significant.

4For example, since the wavelengths of spectral line data adopted in this analysis have preci-
sions only to the third decimal in Å, this already can be a source of uncertainty amounting to
several tens m s−1 (0.001 Å corresponds to ≈ 50 – 60 m s−1).
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Figure 2. (a) Distribution histogram for the errors (ϵ) involved in observed radial velocities
at each radius (r0, r1, . . ., r10, r11 corresponding to r/R = 0, 1/12, . . . 10/12, 11/12). (b)
Averaged errors (⟨ϵ⟩) calculated at each of the radius bins are plotted against the radius.

4. Trends of Absolute Radial Velocities on the Disk

It is worth examining the global characteristics of the resulting vobs in terms of
the symmetry with respect to the meridian. In our choice of observed points on
the disk, any point in the western hemisphere (x+(> 0), y) has its symmetric
counterpart in the eastern hemisphere (x−(< 0), y), where x+ + x− = 0. Let us
denote the radial velocities corresponding to the former and the latter points as
v+obs and v

−
obs, respectively. The four panels of Figure 3 illustrate the correlations

of (a) vobs versus x, (b) v
+
obs versus v

−
obs, (c) 0.5 (v

+
obs−v

−
obs) versus 0.5 (x

+−x−),
and (d) 0.5 (v+obs + v−obs) versus y. We can see the following trends by inspecting
these figures.

• Generally, vobs tends to increase with x, and v+obs and v−obs are inversely
correlated with each other.

• The sum of 0.5 (v+obs + v−obs) is nearly constant, and their average over all
pairs is 0.686 km s−1 (with a standard deviation of 0.081 km s−1).

• This is interpreted as an offset to vobs corresponding to the gravitational
redshift. If this offset is subtracted, v++ v− ≈ 0 is realized, as expected for
rotational velocities.

• Accordingly, the global feature of vobs is explained mostly by the rotational
velocity and an offset constant, which serves as a reference in parameterizing
the theoretical radial velocity in Section 5.1.

5. Derivation of the Angular Rotational Velocity

5.1. Case of Assuming an Analytical ω Versus ψ Relation

As mentioned in Section 4, it is reasonable to include only the rotational velocity
component (Vrot) plus an offset constant (corresponding to the gravitational
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Figure 3. Trends of vobs (observed absolute radial velocities) in terms of the heliographic
coordinates (x and y). Those in the eastern (x < 0) and western (x > 0) hemispheres are

denoted by superscripts “-” and “+”, respectively. (a) vobs versus x. (b) v+obs versus v−obs. (c)

0.5 (v+obs − v−obs) versus 0.5 (x+ − x−), where (v+obs, v
−
obs) and (x+, x−) are the reflectionally

symmetric pairs with respect to the meridian. (d) 0.5 (v+obs + v−obs) versus y. In panels b and

d, the position of 0.686 km s−1, which is the average of ⟨0.5 (v+obs + v−obs)⟩ corresponding to
the gravitational redshift, is indicated by the red dotted line. In panels a and c are also shown
the error bars in gray.

redshift) in modeling the absolute heliocentric radial velocity to be compared
with vobs. This implicitly assumes that any locally-fluctuating irregular velocity
fields (e.g., supergranules or 5-minutes oscillation) are eventually averaged to
become insignificant by using many points on the disk and the global velocity
field (e.g., meridional circulation) is quantitatively negligible in comparison with
rotation.

The rotational velocity component along the line of sight Vrot at the helio-
graphic longitude and latitude of (ϕ, ψ)5 is written as

Vrot(ϕ, ψ) = Rω(ψ) cosψ sinϕ cosB0, (5)

where ω(ψ) is the angular velocity at latitude ψ. The (ϕ, ψ) spherical coordinate
system is related to the (x, y) Cartesian coordinate system on the disk by the
following equations.

x = R cosψ sinϕ (6)

5The range of ϕ is −180◦ ≤ ϕ ≤ +180◦, where ϕ = 0◦ at the meridian (east/west limb is
−90◦/+90◦). The range of ψ is −90◦ ≤ ψ ≤ +90◦, where ψ = 0◦ at the equator (south/north
pole is −90◦/+ 90◦).
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R sinψ =
√
R2 − x2 − y2 sinB0 + y cosB0 (7)

Therefore, from Equations 5 and 6, Vrot is also expressed in the (x, y) system as

Vrot(x, y) = ω(ψ)x cosB0, (8)

which indicates that Vrot is nearly proportional to x if the weak dependence of
ω upon the latitude ψ is disregarded.

As to the latitude dependence of ω, we adopt a second-order polynomial in
terms of sin2 ψ as usually done,

ω(ψ) = A+B sin2 ψ + C sin4 ψ, (9)

where A, B, and C are constants.
Therefore, by inserting Equation 9 into Equation 5, the χ2 to be minimized

by the least squares analysis is expressed as

χ2 =

N∑
i=1

[
vobs,i − xi cosB0(A+B sin2 ψi + C sin4 ψi)−D

σi

]2

, (10)

where vobs,i, xi, ψi, and σi(≡ ϵi) correspond to each point i (i = 1, 2, . . . , N),
and D is an offset constant.

The determination of four parameters (A, B, C, and D) minimizing χ2

given by Equation 10 was done by following the standard procedure of least
squares analysis (e.g., Bevington and Robinson, 2003), which resulted in6 A =
13.92(±0.03), B = −1.69(±0.34), and C = −2.37(±0.62) (deg day−1), while
D = 0.675(±0.001) (km s−1). The corresponding ω versus ψ relation is depicted
in Figure 4.

These A, B, and C values are almost consistent with those derived in Paper I
[(A, B, C) = (14.03 ± 0.06, −1.84 ± 0.57, −1.92 ± 0.85)] within expected un-
certainties, which means that the impact of improvements in this investigation
turned out not so remarkable after all. They are also well compared with most
results reported in the past publications (see Figure 12 in Paper I), such as that
obtained in Mt. Wilson Observatory (Howard and Harvey, 1970) also shown in
Figure 4 for comparison.

Regarding the solution of the offset constant D, its random error in the χ2

fitting is considerably small (±1 m s−1), reflecting the large number of sample
points (N = 3456). It should be noted, however, that much larger systematic
errors are already involved in the absolute values of the original vobs data, espe-
cially due to the ambiguity in the adopted formula of the µ-dependent convective
blue shift given by Equation 3, which are estimated to be on the order of several
tens m s−1 to ≲ 100 m s1 (see Section 6 in Paper II). Accordingly, the D value of
675 m s−1 derived from this analysis (similar to the value of 698 m s−1 obtained
in Paper II) is regarded as reasonable in comparison with the true value of the
gravitational redshift (633 m s−1).

6According to the convention, A, B, and C are expressed in unit of deg day−1, which are
obtained by multiplying the values in unit of s−1 (= km s−1/km; since vobs and x are in units
of km s−1 and km, respectively) by (180/π)× 24× 60× 60.
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−2.37(±0.62) sin4 ψ, is shown by the solid line, where the uncertainty range (corresponding to
the errors in A, B, and C) is indicated by the gray band. The alternative ω solutions derived
for 15 ψ bins of 10◦ wide (cf. Table 1) are also overplotted by blue filled circles (along with
error bars). In addition, the ω(ψ) curve based on Mt. Wilson observations by Howard and
Harvey (1970) is depicted by the dashed line for comparison.

5.2. Case of Dividing ψ Into Narrow Bins

Since we may set vobs = Vrot (+ const.), the relation vobs/ cosB0 = ω(ψ)x (+const.)
holds according to Equation 8. Let us consider the case where sample points are
in a narrow range of ψ and thus their ω’s are similar to each other. Then,
vobs/ cosB0 may be regarded as linearly dependent upon x and its slope (pro-
portionality constant) gives ω for this group of data.

Following this idea, all data points are divided according to the values of
ψ into fifteen 10◦-bins (centered at −70◦, −60◦, . . ., 0◦, . . ., +60◦, and +70◦).
Expressing vobs/ cosB0 by a linear function p+ qx,

χ2 =

N∑
i=1

[
vobs,i/ cosB0 − (p+ qxi)

σi

]2

(11)

was computed for each bin, where σi ≡ ϵi/ cosB0, p is a constant reflecting the
gravitational redshift (D/ cosB0), and q is equivalent to ω. The parameters p
and q were determined by minimizing χ2 as done in Section 5.1. The results
derived for each of the 15 ψ bins are summarized in Table 1. The vobs versus x
plots for each group are illustrated in Figure 4, where the linear-regression lines
corresponding to the solutions of p and q are also drawn.

The resulting ω values are plotted against ψ in Figure 5 (symbols), in order
to compare with the ω(ψ) curve determined in Section 5.1 (solid line). We can
recognize from this figure that both are in satisfactory agreement at low-to-
middle latitude (−50◦ ≲ ψ ≲ +50◦). However, appreciable discrepancies are
seen at higher latitude of |ψ| ≈ 60 – 70◦ where the number of available points is
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Table 1. Results of angular velocity analysis at each latitude bin.

ψm [ψl, ψu] N p q ×R† ω

(deg) (deg) (km s−1) (km s−1) (deg day−1)

−70 [−75,−65] 3 0.633(±0.064) 1.589(±0.655) 11.312(±4.662)

−60 [−65,−55] 30 0.700(±0.015) 1.739(±0.083) 12.381(±0.589)

−50 [−55,−45] 70 0.723(±0.010) 1.702(±0.031) 12.113(±0.222)

−40 [−45,−35] 120 0.714(±0.007) 1.824(±0.018) 12.985(±0.132)

−30 [−35,−25] 174 0.708(±0.006) 1.893(±0.012) 13.470(±0.084)

−20 [−25,−15] 264 0.698(±0.005) 1.963(±0.010) 13.970(±0.068)

−10 [−15,−5] 366 0.682(±0.004) 1.952(±0.008) 13.892(±0.055)

+0 [−5,+5] 851 0.666(±0.003) 1.939(±0.006) 13.803(±0.046)

+10 [+5,+15] 607 0.681(±0.003) 1.964(±0.007) 13.976(±0.052)

+20 [+15,+25] 358 0.669(±0.004) 1.919(±0.008) 13.656(±0.056)

+30 [+25,+35] 256 0.660(±0.005) 1.860(±0.010) 13.240(±0.072)

+40 [+35,+45] 170 0.671(±0.006) 1.753(±0.013) 12.479(±0.095)

+50 [+45,+55] 102 0.662(±0.008) 1.714(±0.023) 12.200(±0.165)

+60 [+55,+65] 54 0.669(±0.011) 1.600(±0.037) 11.390(±0.261)

+70 [+65,+75] 28 0.691(±0.014) 1.707(±0.085) 12.152(±0.607)

Note.
ψm, ψl, and ψu are the middle value, lower boundary, and upper boundary of each ψ
bin. N is the number of data included in each bin. p and q are the results of least-square
analysis, and ω (deg day−1) is derived as q (s−1) ×(180/π)× 24× 60× 60.
†R(= 6.955× 105) is the solar radius in km.

small, which implies that using sufficiently numerous data points is an important

factor for precisely determining ω by this method.

6. Testing Various Distributions of Observing Points

Now that we have obtained the rotational parameters based on all 3456 points

covering the solar disk (which are regarded as the “standard solutions”), it may

be meaningful to examine how the results are affected in cases of different distri-

butions (where data points are reduced in various ways), by which information

of the critical factor(s) may be obtained.

For this purpose, we try three types of test distributions as illustrated in

Figure 6, and the results to be compared with the standard “all data” case are

presented in Table 2 and Figure 7. Each of the experiments are described below.

SOLA: body.tex; 27 June 2024; 0:36; p. 11



Y. Takeda

-1 -0.5 0 0.5 1

northern hemisphere

0
o

+10
o

+20
o

+30
o

+40
o

+50
o

+60
o

+70
o

x/R

2 km s
-1

(a)

v
(x

) 
+

 c
o

n
st

-1 -0.5 0 0.5 1

southern hemisphere

0
o

-10
o

-20
o

-30
o

-40
o

-50
o

-60
o

-70
o

x/R

2 km s
-1

(b)

Figure 5. The observed vobs values belonging to each of the 15 ψ-bins (cf. Table 1) are plotted
against x, where the corresponding linear regression lines (see Table 1 for the best-fit values
of p and q determined by the least-squares analysis) are also overplotted. The results for each
ψ-bin are vertically shifted by 2 km s−1 relative to the adjacent ones. (a) Northern hemisphere
(ψ from 0◦ to +70◦). (b) Southern hemisphere (ψ from 0◦ to −70◦).

6.1. Case (a): Full Disk But with Reduced Density

This test is to examine the impact of reducing the number of points while
retaining the fill-disk covering feature. For this purpose, out of the 6 types of
sub-spectra (Al, Ac, Ar, Bt, Bm, Bb; see Section 2), (1) only A-set (Al, Ac, Ar),
(2) only B-set (Bt, Bm, Bb), and (3) only Ac and Bm, were selected, each of
which are called a-1, a-2, and a-3, respectively.

It is interesting to observe from Figure 7a that, while the result for a-1 is
reasonably consistent (in the overall sense) with that of all data, those for a-2
and a-3 show appreciable differences despite that their distributions also cover
the entire disk (cf. Figure 6). Therefore, although higher density of observing
points should generally be more preferable, it is necessary that the points are
densely distributed in the E–W direction (like a-1) but not necessarily in the
N–S direction (like a-2).

6.2. Case (b): Rejecting Points of Near-Meridian Area

This is the test example where any points whose |x| values (distance from the
meridian) within a certain threshold are excluded, which corresponds to the
treatment done in Paper I in deriving the final ω versus ψ relation (because of
the severely enhanced ω errors at small |x|, cf. Section 1.2.2). Three cases of
|x|/R > 0.2 (b-1), |x|/R > 0.3 (b-2, same as in Paper I), and |x|/R > 0.4 (b-3)
were tried.

As shown in Figure 7b, the differences from the standard “all data” result
turned out insignificant in all of these three cases (b-1, b-2, b-3). This presumably
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all data
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b-3
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Figure 6. Illustrated are the distributions of the data points on the disk, which were adopted
for each of the nine test cases described in Table 2. The standard “all data” case is also shown
at the top for comparison.

suggests that the behaviors of ω are primarily determined by the off-meridian
region of larger |x| where the contribution of ω to vobs(≈ ωx) is more significant.
Therefore, we may state that the choice of excluding |x| < 0.3R in Paper I was
reasonable (though not well recognized at that time), which may explain the
consistency between the results in Paper I and this study (cf. Section 5.1).

6.3. Case (c): Only Circular Region Along the Limb

This test is to simulate the case where the observed points are distributed only
in the narrow circular band around the limb. As a matter of fact, quite a few
spectroscopic determinations of solar rotation (in particular, old ones) relied
upon the spectra only near to the limb because the Doppler shift is the largest
and easier to detect there. Here, three cases of r/R > 0.8 (c-1), r/R > 0.9 (c-2),
and r/R > 0.95 (c-3) are examined.

Figure 7c elucidates that the ω(ψ) results for these cases do not match well
that of the standard case (especially at higher ψ). Although c-1 may still be
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Figure 7. Graphical display for the results of nine test calculations (with variously reduced
points on the disk, cf. Table 2). (a) Cases of a-1, a-2, and a-3 (in blue). (b) Cases of b-1, b-2,
and b-3 (in green). (c) Cases of c-1, c-2, and c-3 (in red). The result for the standard “all data”
case is also shown by the black line (with the uncertainty region depicted as the gray band as
in Figure 4) for comparison. In each of (a), (b), and (c), the upper panel shows the ω versus
ψ relations, while the differences from the “all data” case (∆ω) are plotted against ψ in the
lower panel.

regarded as in favorable agreement at lower ψ (though not good at higher ψ),
the situation becomes worse at c-2 and c-3 (especially c-3, the most outer dis-
tribution, shows a considerable discrepancy). This is presumably related to the
fact these Case (c) tests (in particular c-3) are based on much smaller number
of points (N) compared to Cases (a) and (b) (see Table 2).

7. Difficulty of Spectroscopic Solar Rotation Measurement

The test simulations done in Section 6 have shown that spectroscopically deter-
mined solar rotation parameters (not only the ψ-dependent nature of differential
rotation but also the equatorial rotation velocity at ψ = 0◦) depend rather
significantly upon how the observed points on the disk are chosen.

Presumably, this is attributed to the irregularly fluctuating velocity com-
ponents in the solar photosphere. If the velocity field on the solar disk were
steady and monotonic, reliable measurement of the rotation law would be feasi-
ble based on not so many observing points. However, the actual surface of the
Sun is violently in motion and covered with inhomogeneous velocity fields as
demonstrated in Figure 8, where the 3D representations of (a) vobs(x, y) and
(b) ∆v(x, y) (residual of vobs after subtracting the rotational velocity field Vrot)
are depicted based on our data. As seen from Figure 8b, ∆v shows a random
variation on the order of ≈ 102 m s−1. Therefore, if the distribution of observing
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Table 2. Tests of how the results are affected by variously reducing the observed points on the disk.

N A B C D Remark

all data 3456 13.92(±0.03) −1.69(±0.34) −2.37(±0.62) 0.675(±0.001) (Al, Ac, Ar, Bt, Bm, Bb)

(Data of specific slit positions are excluded)

a-1 1728 13.80(±0.04) −2.14(±0.39) −1.51(±0.72) 0.671(±0.002) only (Al, Ac, Ar)

a-2 1728 14.37(±0.06) −1.00(±0.66) −4.00(±1.18) 0.692(±0.002) only (Bt, Bm, Bb)

a-3 1152 14.18(±0.06) −0.56(±0.68) −4.03(±1.21) 0.707(±0.002) only (Ac, Bm)

(Data within a given distance from the meridian (|x|) are excluded)

b-1 1886 13.96(±0.03) −1.63(±0.35) −2.86(±0.65) 0.669(±0.002) only |x|/R > 0.2

b-2 1430 13.98(±0.03) −1.85(±0.37) −2.40(±0.70) 0.666(±0.002) only |x|/R > 0.3

b-3 1082 14.00(±0.03) −1.91(±0.41) −2.19(±0.85) 0.662(±0.002) only |x|/R > 0.4

(Data within a given distance from the disk center (r) are excluded)

c-1 532 13.95(±0.05) −2.10(±0.44) −1.51(±0.74) 0.665(±0.003) only r/R > 0.8

c-2 220 13.78(±0.07) −1.10(±0.59) −2.20(±0.93) 0.668(±0.005) only r/R > 0.9

c-3 44 13.48(±0.11) 1.00(±0.87) −6.54(±1.69) 0.649(±0.012) only r/R > 0.95

Note.
N is the total number of adopted data points (see also footnote 2). A, B, and C are in unit of
deg day−1, while D is in km s−1. See Figure 6 for the graphical display of the distributions
for each of these ten cases.

points is not so dense as to sufficiently cancel out this inhomogeneous velocity
fields, incorrect rotation parameters may result.

Accordingly, it is likely that some previously published solar rotation results
obtained by Doppler shift measurements (especially those based on compar-
atively smaller number of observing points) suffered appreciable uncertainties.

Figure 8. 3D representation of (a) vobs(x, y) and (b) ∆v(x, y), where the x–y plane is divided
into 40 × 40 square segments. Here, ∆v is the difference between vobs and Vrot (rotational
velocity field corresponding to the final solutions of A, B, C, and D).
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This may be the cause for the large spread in ω versus ψ curves or some apparent
outlier values of A, B, C seen in the past historical publications (see, e.g., Figure 2
in Paternò, 2010, or Figure 12 in Paper I). For the same reason, the suspected
cyclic variation of solar equatorial rotation velocity (by ≈ ±5%) with a period
of 34 years, which was reported by Belvedere and Paternò (1975) based on the
historical publications from 1900 to 1970, had better be viewed with caution.

Nevertheless, the spectroscopic rotational parameters in the “approximate”
sense are regarded as being almost established at A ≈ 14, B ≈ −2, and C ≈ −2
based on the literature results (see Figure 12 in Paper I). Yet, what is required for
proceeding to the next step (e.g., to detect the dependence of rotation upon the
activity phase as mentioned in Section 1) should be to further improve the pre-
cision of determination. Though this is not an easy task for which nobody knows
any definite recipe, what should be generally kept in mind may be summarized
into the following two points.

• First, it is essentially important to employ spectra obtained at as many
(i.e., densely distributed) observing points as possible. Regarding their dis-
tribution, more weight (higher density) should be given to larger x region
as well as to E–W direction according to the results in Section 6.

• Second, even if using many points on the disk could be accomplished, only
one set of data acquired in a short time (e.g., in ≈ 1 day) is not sufficient
to warrant the reliability of the solution. Comparing the results derived by
analyzing several or more sets of data based on repeated observations over
a certain period would help to estimate the real precision quantitatively.

8. Summary and Conclusion

In studying the solar differential rotation on the visible surface, two represen-
tative methods have been traditionally employed: (i) tracing of active regions
(such as sunspots) over the rotation cycle and (ii) spectroscopic Doppler shift
measurement on the disk.

Following the latter spectroscopic approach, Takeda and Ueno once investi-
gated in Paper I the nature of solar differential rotation based on the full-disk
observations by applying the I2-cell technique, which is known to be efficient in
precise determinations of Doppler velocity shifts.

As viewed from the present knowledge, however, the procedure of analyzing
I2+solar composite spectrum adopted in that paper was problematic in the
sense that the center–limb variation of spectral line strengths was not taken
into consideration, because the disk-center spectrum was exclusively used as the
reference spectrum. In addition, the derivation of ω done in Paper I was not
necessarily adequate because it was directly converted from vobs at each point of
the disk, which eventually resulted in considerable errors in ω at smaller x near
to the meridian.

The remedy for the former problem is to use an adequately adjusted theoreti-
cal spectrum as the comparison reference at each point as done in Paper II (where
the gravitational redshift was determined from the meridian data), by which
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absolute heliocentric radial velocity can be obtained. Meanwhile, the solution
for the latter problem is to derive ω (not one-by-one from each vobs but) from
an “ensemble” of vobs data by applying the least squares analysis.

Motivated by these considerations, the author decided to redetermine the
parameters of solar differential rotation based on absolute radial velocities, which
were derived from the same observational data as used in Paper I but by applying
the analysis procedure devised in Paper II.

In deriving the ω versus ψ relation, two different approaches were tried. (a)
Expressing ω by 2nd-order polynomial in terms of sin2 ψ, a least-squares analysis
was applied to the whole vobs data over the disk to derive A, B, and C (coeffi-
cients of the polynomial) and D (gravitational redshift). (b) All data points were
divided according to ψ into fifteen 10◦-bins, and a linear regression analysis was
applied to vobs data belonging to each ψ-bin to determine the corresponding ω.

The first approach resulted in ω (deg day−1) = 13.92(±0.03)−1.69(±0.34) sin2 ψ
−2.37(±0.62) sin4 ψ along with the gravitational redshift of 675 m s−1. Mean-
while, the ω values derived by the second approach at each of the ψ-bins are in
good agreement at low-to-middle latitude (−50◦ ≲ ψ ≲ +50◦), though apprecia-
ble discrepancies are seen at higher latitude (|ψ| ≈ 60 – 70◦) where the number
of available points is small.

This ω versus ψ relation is almost consistent with that obtained in Pa-
per I, which means that the changes in the results are insignificant despite of
the updated procedures in this new analysis. Likewise, these A, B, C values
are favorably compared with those of previous publications (see Figure 12 in
Paper I).

As a related application of this analysis, the impact of reducing the number of
observing points was also examined. This test revealed that significant changes
of rotation parameters are observed in some cases, which is presumably due to
the irregular velocity field on the solar surface. It is necessary, therefore, to pay
attention to secure a sufficiently large number of points on the disk, in order to
obtain reliable results of higher precision.
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